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A second-order theory for equatorial, baroclinic Rossby waves in a bounded 
ocean yields, among other components, terms of zero frequency. We inquire 
whether the associated recti$e& flow (or ‘streaming’, or ‘mass transport’) can be 
related to the submerged equatorial jet observed by Cromwell, Knauss and others. 
For quite reasonable models of baroclinic Rossby waves, the resultant streaming 
can be sharply concentrated a t  the equator, and varies in depth as N ( z ) ,  thus 
giving maximum flow at the thermocline (where the Vaisala frequency N(x)  
is largest). In this way the rectification hypothesis might account for the 
observed submerged equatorial steering of the Cromwell current. The observed 
direction of streaming calls for a predominance of equatorially symmetric 
Rossby waves. The observed magnitude implies that the r.m.s. fluctuations be 
of the same order as the mean current; that is to say, we have applied weak- 
interaction theory to a strong-interaction problem. There are other difficulties. 

1. Introduction 
The equatorial undercurrent, discovered by Cromwell in 1951, flows eastward 

precisely along the equator. In  the Pacific, where the Cromwell current is best 
developed, maximum velocities of the order of 1 m/sec are found at 100 m 
depths; the total transport of 4 x 1013 g/sec is comparable to that of the Gulf 
Stream. Hydrodynamicists are fascinated with the peculiar nature of the 
submerged equatorial steering of the Cromwell current;$ we shall add yet 
another to the existing multitude of theories. 

The formalism can be sketched as follows: equatorial Rossby waves in an 
unbounded ocean can be characterized by a two-dimensional discrete set 
( r ,  n )  of up-down and north-south mode numbers, and by the dispersion rela- 
tions s = s$(v) between east-west wave-numbers (sf corresponds to posi- 

t On sabbatical leave from the Institute of Geophysics and Planetary Physics, Univer- 
sity of California, San Diego, La Jolla, California. 

$ Volume 6(4) of Deep-sea Research (1960) is devoted to a review of observations and 
theories of the Cromwell current. See also Robinson (1966). Knauss (1966) reviews recent 
evidence. 
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tive (west-to-east) group velocity) and frequency. In  the linear theory, the 
associated oscillatory currents q(l)(u, v) can be written as a superposition of 
modes, 

all equatorially trapped, where s* stands for s&(cT), and implies summation 

over bothsigns. The vector K(l)(y, z)  is alinear transfer function. For an unbounded 
ocean, the qku are independent mode amplitudes; for an ocean bounded by east 
and west coasts and with r,  CT specified, the q$ are all determined in terms of two 
arbitrary amplitudes. 

z t  

Second-order theory yields currents q = q(l) + q(”, with 

where s ( a ’ )  stands for s:&)),, andsimilarly for ~ ( C T ” ) ,  and where K(y,z) are quadratic 
coupling matrices, to be summed (for each r‘n’a’r”n”a’’) over all possible 
eight sign combinations. The part of q(z )  corresponding to a zero difference 
frequency, CT‘ - a“ = 0,  to be denoted by Q ( x ,  y, z) ,  is associated with ‘rectified’ 
currents. In  the case of a single, self-interacting r-mode, it turns out that 

Q = curl @ with @(x, y, x )  = (ubd t )  + H(y, z) ,  

so that, apart from an arbitrary function P(y, x ) ,  the (rectified) streamfunction 
is given by the mean quadrature product of the orbital components. 

2. Wave equations 

equatorial ocean are 
The linearized wave equations in a vertically stratified, incompressible, 

Ut- fv = -pz, vt+fu = - p  II’ ( h 2 )  

wt = -pB+ $3 $I = -N2(z)w, (3, 4) 

u~+v’y+wa = 0, (5) 

where density = po(z ,  y) +&z) +p(x, y, z, t ) ,  

pressure , $ = - g P “ f p ,  N2(x)=-g - .  A P =  
PO Po PO 

With the hydrostatic assumption, a < N ,  the term w, is negligible, and (3) and 
(4) are combined into 

wN2(z)+pst = 0. (6) 

3. Kelvin waves 
For illustration we shall sketch the degenerate case of a wave motion for 

which v = 0;  the example is somewhat misleading, as we shall see. The solutions 

u = f q cos (sx T gt) e F a a g a Z s ,  v = 0, 

p = cq cos (sx T at) e ~ a a ~ e Z s  
(7) 
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satisfy (1) to (5 ) ,  provided 

c = (T/s, a 2  = p/sc, f = py. 

For equatorially trapped waves we must choose the upper sign ; hence the waves 
travel in a positive (eastward) direction, with velocity c. 

The function Z(z) (proportional to the vertical displacement) must satisfy the 
differential equation 

subject to the bottom and surface boundary conditions 

Z,,+c-2X2(z)Z = 0 (8) 

2 = 0 at z = 0, 2, = qc-?Z a t  x = h. 

For a gradual variation in N(z )  we can use the W.K.B.J. approximation to (8): 

(9) Z(z) N N-3 ( z )  sin KZ, Z,(z) - c-lN$(x) cos K X ,  

and so approximately 

I c,, = , /(gh) M 200m/sec, 

h I  2.30 c, = - M -m/sec 
rn r 

( r  = 1,2, ... 

for external andinternal modes, whereB = h-l Ndz x 25 cyc./day is a typical 

value for the Vaisala frequency averaged from bottom to top in a 4 km ocean. 

u(x, y, z, t )  = qr cos (sx - ( ~ t )  e-aaga [N(x)/W]+ cos KZ 

Sa 
We now write 

for the orbital velocity in a Kelvin wave, where qn is a representative amplitude 
for the rth mode. 

The time-averaged Bernoulli pressure is simply 

P(Y,z) = -8(u 2 ) - - -1 4476 -@'/+[N(z)/I] COS~KZ.  

For high up-down modes (large K ( z ) )  we replace cos2icz by its (local) vertical 
average : 

P(y, z )  = -&$ e-pg2/crN(z)/m. (11) 

The current in geostrophic balance with this pressure distribution is given by 

and the total transport is 

This is not, by any means, a derivation of wave-induced streaming. But it turns 
out that the systematic development (which will follow in 5 5) reproduces most 
of the features of (12). Meanwhile, this preliminary discussion establishes the 

16-2 
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appropriate scales for the general case of planetary waves ($4), and provides a 
surprisingly good framework for summarizing the observational evidence. In  
particular: 

(i) The vertical profile of U ( z )  is determined by N ( z ) .  This is a remarkably good 
prediction for the Cromwell current in the Western Pacific; further east where 
the thermocline is at  greater depth, so is the current? (figure 1). 
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FIGURE 1. Vertical profiles a t  the equator of eastward velocity U and Viiisiilii frequency 
N (courtesy John Knauss). 

(ii) The e-folding (or 'critical') latitude is given by ,dy;/c, = 1, hence 

or roughly k 3' latitute for r = 1, and f 1' for r = 9. Observed profiles1 U(y, z )  
indicate something like f 2': 

2"s. 1"s. 0 1"N. 2"N. 

Depth 120 m 7 42 115 57 3 cm/sec 
Depth 140 m 50 36 96 62 32 cm/sec 

(iii) Mean flow and mean-square flow are related according to U = (u2)>lc,; 
for large r (small c,) we can have U ,  u, c, all of the same orders, so that the current 
could be maintained if departures from the mean were comparable with the mean 
current itself. (For the surface (barotropic) mode, co is very large and its contribu- 

7 A correction for the westward surface flow associated with the south-equatorial 
current (a shallow flow) would somewhat improve the resemblance between observed 
and computed flow. 

$ Expedition Swan Song, 14OoW., by courtesy John Knauss. 
8 This is clearly beyond the present perturbation treatment. 
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tion is absolutely negligible.) Knauss (1966) measured the Cromwell transport 
at 140' W. in October 1961 (expedition Swan Song) and found 55 % of the 
transport measured in April 1958 at the same place. 

(iv) The reader will have noticed that the computed current flows in the 
wrong direction. The reason is simple: the increased mean-square velocity is 
associated with an equatorial pressure trough, and this implies geostrophic 
motion from east to west. 

The question is, can something be done about the current direction without 
destroying the more pleasant features of the hypothesis? The answer is: Yes ! 

4. Planetary-gravity (pg) waves 
Equatorial scaling 

At this stage it is convenient to scale in terms of the north-south e-folding 
distance (c/p)*. An associated non-dimensional parameter is the reciprocal 
square of the critical latitude: 

where m= X,/Q is the meun Vaisala frequency in cycles/day (c/d), and where 
frr is the number of vertical cycles/ocean depth. This large parameter y con- 
veniently represents the relatively large vertical wave-numbers associated with 
baroclinic planetary waves. We now write 

E = y W 4 ,  7 = rTy/a), 
[ = m(z/h)  = frym(z/a), T = 2ily-*t, 

for the eastward, northward and upward dimensionless co-ordinates, and for 
dimensionless time. We scale velocities and pressure according to 

(14) 

2, = dZ/d[ = [m(z)/h7]4 cos KZ, where 

is the short-wave solution to the differential equation 

mZZss + myz) 2 = 0,  

as previously found (a@) as m are the variable and mean Vaisalilti frequencies 
in c/d). The surface-boundary condition quantizes yr (equation (13)). The system 
of equatorial equations now becomes 

(16) i u7-7v+p[ = 0, 

v7 + 7" + p ,  = 0, 

ug+vv +p7 = 0. 
The scaling involves the vertical mode number r .  This is an important limitation 
to the present approach. 
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Planetary-gravity waves 

Progressive pg-wave solutions can be written 

S ?, 

S 
-4  -3 -2  -1 0 1 2 

FIGURE 2. The planetary-gravity wave dispersion s,(v) for indicated values of m.  The 
dashed curves for n = 0, - 1,  are not admissible dispersions in the context of equatorial 
trapping. Positive longitudinal wave-numbers s correspond to west-to-east wave pro- 
pagation with phase velocity v /s ;  positive slope aulas to west-to-east group velocity. 
Planetary (or Rossby) wave solutions Lie beneath n = 0 for negative s ;  gravity wave 
solutions lie above n = 0. All admissible real roots s:(u) sO(u)+s~(cr) for the case 
(I = 2.5 are labelled. 

provided the non-dimensional (spacial and temporal) frequencies, 

s = y-*as,, c7 = gy*@2, 

satisfy the pg-dispersion relation (see figure 2 )  

and provided Y,(q) obeys the Weber equation 

(20) Yq7 + [ (2n + 1) - 721 Y = 0 ;  n any real number. 

The associated functions Y"(7) and Y ~ ( T , J )  are given by 

The case s = f c7 will require special consideration. 
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We are here concerned with that subset of the Weber function Y,(q) which 
vanishes for 7 = k co: 

~,(q) = (e ,n!)- tn-)e- t~~~,(r l )  ( n  = 0,1,2, ...), ( 2 2 )  

where H,(q) is the nth Hermite polynomial. Negative7 n integers are not 
equatorially trapped. For n = 0, equation (19) has the roots so = - CT and 
so = (d- l)/a. The u-field associated with so = - CT is unbounded at high lati- 
tudes, and therefore inadmissible (Matsuno 1966). The Kelvin wave solution has 
the unique property v = 0 and does not fall into class (17), even though its dis- 
persion relation galsd = c (or = s in non-dimensional units) is one of the roots 
of (19) for the case n = - 1, as pointed out by Matsuno. (The other root, 
s - ~  = - (cr+ cr-l) is not admissible.) We refer to Matsuno (1966) and Bland- 
ford (1966) for further discussion.$ The Blandford-Matsuno notation (18) has 
the advantage of bringing the dispersion (19) into a canonical form, and leading 
to the compact presentation of figure 2 ,  but a t  the expense of camouflaging the 
dependence on the vertical mode structure parameter yr. We may visualize 
figure 2 as a plot of S ( 2 5 )  for y = 1, where 

(23) s" = usa = y b ,  5 = Vd/R = 2 y - b ,  

are dimensionless frequencies (in cycles/earth circumference and cycles/day, 
respectively) that do not involve yr. In  (a, +space all curves move downward 
(toward smaller 5) and outward (toward larger 151) with increasing y. 

Equatorial conjinement 

For orientation, we inquire what single combination of r and n would have the 
appropriate latitude scale. Y,(q) has n zeroes between the turning 'latitudes' 
qr = 5 (2n+ l)* and sharp cut-offs beyond. The average spacing between 
successive zeroes is 2(2/n)t in y-scale, or 2(2/n)4 y-4 in latitude. We identify 
half this quantity with the estimated width $c of the Cromwell current: 

4: = 2/(yn), y w 300r, $c = 0.02 radians; 

hence for n = 1 3 9 

we have Y =  5000 1667 555 

r =  18 6 2 

$r = 0.02 0.06 0.18 radians 

to which we add 

co = 0-29, 1.71 0.19, 2.63 0.11, 4-36 

B0 = 0*0082,0*048 0.0093, 0.13 0.0098, 0.37 c/d 

for the maximum planetary and minimum gravity wave frequencies associated 
with the choice n, r (see figure 2 ) .  These are found by setting au/as = 0 in (19) ; 
hence 

8% = - $, (vO)2 + ( 2 ~ 0 ) - ~  = 2n + 1, 

t Suitable defhitions a m  given in Erdelyi el al. (1953, 8.3 (19) and 10.13 (7)). 
$ A presentation similar to figure 2 was given by Groves (1965). 
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as shown in figure 2 by the intersection of the n-lines with the dashed curve 
sa = -+. The corresponding frequencies 8O = 2 y - b 0  in c/d are given on the 
last line. At large n, 8:Rossby approaches 4$,. 

For low n, one requires quite high r-values in order for the current to be 
adequately concentrated. The work of Cox & Sandstrom (1962) and of Hender- 
shott (unpublished Harvard University thesis) concerning the scattering of 
surface into internal tides by bottom irregularities does in fact favour quite 
high r-values, typically, r = 10. On the other hand, at subtidal frequencies (and 
these turn out to be the essential frequencies in the present context), Phillips 
(1966) finds little evidence of high vertical modes. None of the observations 
quoted here were equatorial. 

In  fact, the Cromwell current is not to be interpreted as the result of a single 
n,r  mode, but rather from superposition of many modes. It turns out that 
$c N (yn)-+ is still a meaningful representation provided n is interpreted as the 
highest Hermite order of any consequence. 

The two-class approximation 

The pg-solutions fall into two classes, 

class 1 : gravity waves, 

class 2: planetary (or Rossby) waves, 

as shown in figure 2. For these two classes the terms in equation (19), s /a  and 
- a2 respectively, play a secondary role, and can be neglected in the asymptotic 
cases of very high or very low Blandford-Matsuno frequencies. Referring now 
to (21) we find the u solution to depend on two latitude functions, y Y  and 5, 
weighted in the ratio a:s, and it would seen natural to ignore one or the other 
in the case of small or large a. The standing planetary wave solutions of Rattray 
& Charnel1 (1966) are arrived at in this manner. 

But the roots to the quadratic (19) 

} 
s$ = SO&&, 

so = - 1/2a, (sL)2 = (so)2+a2--(2n+l), 

reduce to S+ = - (2n+ l)a, s- = - l/a for c < 1, 

sf= &a for a 9  1, 

respectively, and there is no justification for ignoring one or the other of the 
7-functions, at least not as far as the highly baroclinic (strongly divergent) 
situation is concerned. Moreover, our emphasis on the equatorial problem does 
not lead naturally to the two-class approximation for large or small a; rather it 
is associated with small n-integers and hence a of order 1. 

The standing-wave problem 

We shall need solutions in the presence of boundaries at 5 = 0, tL, and here the 
questions raised in the preceding section play a vital role. We superimpose 
waves of positive and negative group velocity and require that 

q+u+ + q-u- = 0 
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at 6 = 0, cL. In  the former case this implies that 

be satisfied a t  all latitudes. But, since Yu is the sum of two linearly independent 
latitude functions, condition (26) needs to be satisfied for both separately; this 
can be done only if 

which leads to the generally unacceptable condition sf = s;. We have shown 
that this difficulty cannot be avoided by asymptotically ignoring one or the 
other 7-dependence. 

The physical significance and the appropriate procedure have been developed 
by D. Moore and A. R. Robinson (D. Moore, Harvard University thesis, in 
preparation), and the remainder of this section summarizes the relevant results. 
In  order to satisfy the boundary condition that u = 0 on 6 = 0 and < = tL it is 
necessary to use a superposition of all the available separable solutions corres- 
ponding to integer values of n. With the help of the recurrence relations 

Moore writes the totality of separable solutions as 

for n = 1 , 2 , 3 . .  . , plus the special cases 

for n = 0, where so = (1- a-l, and 

as a notation for the Kelvin waves. At  a given frequency there are two solutions, 
one with u an odd function of 7 and v an even function of 7, the other with u even 
and v odd. In the latter case we write 

u = q-zu-,+ c (q$un++q,-u,), v = c (q,+v,++q,vv,-) 
n=1,3, ... n=1,3, ... 

and determine the q z  by requiring that u = 0 on 6 = 0, &. 
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The coefficients are determined successively by invoking the completeness of 
the Hermite functions, and are given in terms of the arbitrary amplitude of the 
Kelvin wave q-l by 

so long as sin s; gL does not vanish for any n. If it does vanish for any n, let n' be 
the largest such value. In  that case qf = 0 for n < n', and 

For n > n', the 4,' are still given by (27), but are in terms of the arbitrary ampli- 
tude qf ,  rather than q-l. We shall call this the truncated case. 

For the case where v is even in n and u odd, we write 

u. = qouo+ c (qt..,'+!.I;u.;), 2) = qovo+ c (a,'v,'+q;v,), (29) 
n = 2 , 4 ,  ... n=2,4, ... 

and determine the coefficients qf in a manner completely analogous to the case 
discussed above. 

For any given there is some maximum integer n (n" say) beyond which there 
are no real solutions for s (equation (24)). The summation (27) extends indefinitely 
beyond n'' and so is associated with imaginary values s;,,.. These correspond 
to waves decaying exponentially from either boundary; they do not contribute 
to the interior solution. Moore associates this part of the solution with a poleward- 
travelling Kelvin wave along the eastern boundary, and an equator-ward wave 
along the western boundary. A northern and southern boundary requires that 
these waves be matched and so quantizes cr. This is not essentially involved in the 
equatorial problem. 

We now have the apparatus for computing the non-linear stresses. To keep 
things manageable we shall choose n' and n'' such as to permit the simplest 
meaningful solutions. 

5. Mean circulation 
Equations of mean flow 

Let &( U ,  V ,  W )  and q(u, v, w) designate the mean and oscillatory flow,? respec- 
tively, and P ,  p the associated pressures divided by po. The mean horizontal 
equations of motion are 

where 
f k x Q  = -V,P+T,, (30) 

+, Y, 2) = ( - q . vq> 

t All uni ts  are now dimensional. 
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is the mean? stress associated with the equatorial wave solutions. The terms 
Q . V Q  are ignored, even though they can be demonstrated from observations 
to be comparable to the linear terms (Knauss 1966). This is in line with our 
perturbation treatment. We also have 

for the vertical motion, and 
0 . Q  = 0. 

Cross-differentiation of (30) leads to the equation 

- fq+pV = k . ( V x T ) .  (33) 

For the case of vertically integrated transports the term W disappears, and we 
have Sverdrup's (1947) relation for the equatorial transports from specified 
surface wind stresses. Our problem is a generalization of Sverdrup's treatment in 
so far as the interior stresses are presumed to be known. 

Geostrophy 

Anticipating the result W = 0, equation (33) states that P V  is of order r/yG, 
where 2y, is the width of the Cromwell current. This immediatelyimplies that, in 
the east-west component of the momentum equation (30), thefV term, is com- 
parable to 7 and geostrophy does not prevail. But with regard to the north- 
south component, since 7 is of order fV,  the f U term is larger than T in the ratio 
U : V. U is observed to  be much larger than V and we can expect near-geostrophic 
balance between fU and - P,. These remarks are quite general, and apply to 
any realistic model based on equatorial vorticity balance. Knauss (1960), 
Metcalf, Voorhis & Stalcup (1962), Montgomery & Stroup (1962) and Reid 
(1964) found the Cromwell current and the observed density field related in 
accordance with the geostrophic equation. Surprisingly the opposite conclusion 
was reached by Knauss (1966) for expedition Swan Song. 

Mean east-west pressure gradient 
Knauss (1966) has measured a mean east-west pressure force, - px = 2.6 x 10-5 
dynes/g, at  the depth of the core. He takes the view, now widely held, that the 
Cromwell current flows simply in response to this horizontal pressure gradient. 
For our theory the mean east-west pressure gradient across the ocean vanishes 
(as will be shown), so this is a crucial point. 

We are not convinced by the observational evidence for px. The value quoted 
above refers to an average between 140' W. and 104" W. But, according to figure 
16 of Knauss's paper, the mean gradients are essentially constant, or even 
reversed, if attention is focused to the region east of 130" W. and deeper than 
75 m, including the sector at 118 O W. where the observed flow was very pro- 
nounced. 

The time mean of any function F(z,  y, z, t )  is d e k e d  by 
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Writing 26 = UC(& r ,  Y) cos d+ u,(t, q, Y) sin vt, 

and similarly for v, w, p ,  it  can be demonstrated (D. Moore, Harvard University 
thesis) that 

uc, v,,p,, ws are odd functions of 6 - itL, 
us, vc, ps, w, are even functions of 6 - &cL. 

The x-momentum equation at the equator is - P, + +) = 0, and thus 

But all products in ( ) are odd functionsof t - *EL, and accordingly the integral 
must vanish. An equatorial isobar is a t  the same level at  the two coasts. In  mid- 
ocean it is lowered by O(u2/g); at core depth this is O( 10 em), not necessarily 
incompatible with Knauss’s figure 16. 

Reynolds stresses and torques 

We need to calculate (V. (psq)) and (k. V x T). Direct substitution from the 
formal series solutions is tedious. The calculation may be greatly simplified by 
taking advantage of the following conditions: 

(i) The fluctuating fields satisfy the equations of motion (16). Two formulations 
of (16) are particularly useful. The time average of the energy equation gives 
(dimensionless) 

- *((u2+v2+p2)t) = (up)t+ (up), = 0 

Wt = (v, - UJt  = qpt - 0. 

(34) 

in view of (ii), and the vertical component of vorticity obeys the relation 

(351 

(ii) The time average of the time derivative of any bounded function is zero. 
This implies,for instance, that, iff = gh, where g and h are any bounded functions, 
then 

(ft) = (gth + ght) = 0, or (g&) = - (ght). (36) 

(iii) The z-dependence is separable; and, for simplicity, we deal with a single 

(iv) Ultimately we shall permit ourselves to form local vertical averages in the 
vertical mode, cf. (14). 

sense of (11). 

Vertical flow 

The expression (31) in terms of the non-dimensional variables of 0 4 can be written 

w = “(z)1-2 (V * (P, P))d*mensional 

But ((up){+ (up),) = 0 by (34), and (ppt) = 0 by (ii). Hence 

W = 0 toorder ($+) * 
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As we shall find U of order q2/c, this implies that 

W < y-BW-1U or W < 10-3u. 

From various biological and chemical considerations Knauss (1966) estimates 
W to be 0.1 to 1 m/day and upwards at  the equator; the equatorial U is 1 m/sec 
eastward, so perhaps W = + 10+U to + 10-5U, certainly much less than lO-3U. 
It would be very interesting if a higher-order calculation would yield a definite 
result. One thing that has been neglected is the dependence of N ( z )  on latitude 
resulting from the geostrophic adjustment of the density field to the mean 
current. We have also ignored the 'smaller' Coriolis terms in (1) and (3). 

Horizontal jlow 

The expression (33) in terms of the non-dimensional variables now becomes 

P 2  v = P-lk.(V x 4 = -K(uut:+vv,),- C (UV,+vvq)5)z~+((u~f)B-(vPt)5)ZZ,g) 

(39) 

= - % W E +  C (vw),)~~+(PfW--~I,+vPt,)ZZ,~}. (40) 

Taking advantage of the relation (35) pertaining to the vertical component of 
vorticity, (40) eventually reduces to 

where d denotes 

For details see the appendix. 
With W = 0, (32) is simply U r + q  = 0, which may be integrated to give 

u = - C {(.vt),Z~ + (up) (ZZ,),) (42) 

plus an arbitrary function of y, z. 
We may now form vertical averages in accordance with (iv) : 

- 
(ZZ~), N sinm cos~x = 0, 2; = (W(z)/ iV) C O S ~ K Z  M ifl(z)/iV; 

therefore 
(43) 

with F(7,C) an arbitrary function. Or, reverting to dimensional time and di- 
mensional u, v(x, y, x ,  t ) ,  we have simply 

$ = (uv f )  + F ( y ,  2) .  (44) 
In  general 
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is the result of all possible interactions. Certain simple parity rules emerge: 
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Integers Functions - r JL__---7 

121 m2 un,(a) vnl(V) $(T )  U(T) 
(i) Odd Odd Even Odd Odd Even ( + ) 

(ii) Even Even Odd Even Odd Even ( -  ) 
(iii) Odd Even Even Even Even Odd 
(iv) Even Odd Odd Odd Even Odd 

But we have shown that only like integers interact upon reflexion. Thus, cases 
(iii) and (iv) are not ' reflexion coupled' (though they might be source coupled); 
accordingly, we expect the u-phase to be random with respect to the v-phase 
and the mean products (uvt) to vanish. (To those who share our enthusiasm for 
the present hypothesis, the equatorial symmetry of the Cromwell current is 
evidence for poor odd-even coupling.) 

For the simple cases we have been able to solve, U is positive (eastward) at the 
equator for even functions u(q) and negative for odd u(q), in the case of planetary 
waves; opposite in the case of gravity waves. The integral f i d t  favours low 
frequencies in proportion to a-l. As a result, planetary waves are more effective 
current generators than gravity waves. 

6. Some special cases 
Simple progressive wave 

Here we consider the case of an elementary train characterized by a, n, s; s can 
be s+ or s-, but not both. From (14) and (17) we write simply (in dimensional 
units) u(x ,  y, x ,  t )  = q cos (sx - crt) YUZC, 

v(x, y, z, t )  = - q sin (sx - crt) YZc,  
9 = -&fa-1YYuq+F(y,X).  

Thus V = 9, = 0, U, = -V, = 0, and U is an undetermined function of Y and 
Z and has nothing to do with the planetary waves. The Kelvin wave solution 
treated in Q 3 falls into this category. 

Oppositely travelling free waves, no barriers 
We visualize a source generating s+ and s- (associated with negative and positive 
group velocity) that travels many times around the earth. For any single fre- 
quency a and mode n, we have 

u = [a+ cos (s+x - at + e+) YU+ + q- cos (s-x - crt + e-) Y 1 
u-""} (45) 

v = - [q+ sin (s+x - at + 8+) + q- sin (s-x - crt + 0-)] YZ,, 

with the phases 8+ bearing a fixed relation to 0- owing to the common origin of 
the s* wave-numbers. The result is 

1 
20- 

@ = - - [Q+Q- coS ( 2 s ' ~  + 8+ - e-) ( YU+ + Y U - )  + (q+)2 YU+ + ( ~ - ) ~ Y u - I  YZ~ 
+ %/, 4, (46) 

thus leading to cellular streaming with 2s' cycles around the earth. 
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An interior barrier 

Now visualize a knife-edge barrier at  xl, y1 so that u = 0 and U = 0 at xl, yl. 
From (45) we find that this condition requires 

and from (46) 
B+ = 8- and q+Y"+ = - 4-Y"- = 4, say, 

with G,(yl, z )  = 0. The barrier produces recti$ed (sign independent of x) stream- 
ing at latitude yl, with the direction of the streaming depending on the Y-func- 
tions. The algebraic basis of this peculiar result is that 

u - sins'(x-xl), ( u d )  w sin2s'(x-xl) 

at yl; hence, with G,(yl) = 0 we find that 

l/fst, U N sin2 s'(x - xl) 

are rectified. The result suggests a radical modification of streaming when a 
knife is stuck into a suitable rotating fluid. With regard to the oceans, we might 
look for a steady zonal flow to the east and west of islands. When there are many 
barriers, we run into the host of difficulties that have been discussed in connexion 
with standing waves between boundaries. 

Standing waves between boundaries 

The simplest possible case is that of 

(47) n' = n" = n, 

so that there is only one term in the n-summation yielding a real s. The pre- 
requisite conditions follow from (28) and (24): 

sins& = 0 and 2n+ 1 < O ~ + & T - ~  < 2n+5, (48% b)  

where s' and 0- are now Blandford-Matsuno frequencies. The non-dimensional 

-- - '7" sin (so[ - 0-7) sin sk[Y,-, + . . . + Y,+l + boundary layer, (49) 

- 2  
s, +0- 

v([ ,T,T)  = - [ ( ~ ~ + ~ ) ~ 0 ~ ( ~ ~ [ - 0 - 7 ) s i n s ~ [ + s ~ s i n ( s O [ - a ~ ) c o s s ~ ~ ~ ~ ,  
s; +0- 

+ boundary layer, 
(2nP (uv') = - - K sin2 sk[ Y,-lYn + . . .Yn+lY,+ boundary layer, 
0- 

where 
( - S O ) - 0 .  

(SZ + 0- )2  - K =  
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The u-component in Yn+l does not vanish at 6 = 0, &, without including the first 
boundary-layer terms, and we shall ignore Yn+l for the time being. The result is 

Yn-l Y, q 
in dimensional form, except that K is in terms of Blandford-Matsuno frequencies. 
Had we included the complete set of Yn+l terms, there would have been a correc- 
tion factor 1 + 2c2, and an additional term which in the interior has a simple 
coszs~x dependence on x. Using the asymptotic forms of (25)  and the restriction 
(48b), it  can be shown that the factor (q+)2K/(rd favours planetary waves over 
gravity waves as a source of streaming in the ratios (for large n) 4n and 64n, 
respectively, depending on whether the two wave classes have the same u-com- 
ponents or the same w-components. The direction of streaming is opposite for the 
two classes of waves, with the sign reversal occurring at the critical point 

CT = 2-4, SO = - 1/20 = - 2 4  (B.M. frequencies). 

At the eastern side of the Pacific, the equator is blocked by the Galapagos 
Islands, and Knauss (1966) finds a reduced current a t  the station located at 
96" W., 400 km seaward of the Galapagos. The theory indicates a boundary layer 
of width N ay-4 = 350r-i km, equation (29). At least there is no conflict here. 
On the western side neither the measurements nor the boundary are definitive. 

The y-dependence of U is given by the term (Yn-l Y,),, which, aside of normal- 
izing factors, can be written 

(Yn-lYn), N ~ X P  ( -r2) [-2~HnHn-, + (HnHa-1) 71. 

The most important problem here is the sign of U at the equator. For Rossby 
solutions, CT < 2-4, U is positive (eastward, as observed), when (referring to 
equation (49)) u(q) is an even function and v(7) an odd function. In  order for our 
hypothesis to be valid, an argument will have to be made for a source mechanism 
that favours equatorially symmetric Rossby waves, that is, u(7) = u( - 7). 

One might attempt to gain some insight into the expected profile away from 
the equator by superimposing solutions (50) : 

OD 

II. N C P(n)Yn-lY,* 
n = l  

The procedure ignores all n-interactions except those with its neighbours ; it 
remains to be seen whether the argument for rectification can be maintained in 
the more general case. A serious limitation is imposed by the r-dependent scaling, 
for this obscures the role of a variable r-content. We proceed, nevertheless, using 
the 'equatorial approximation ' 

Y, N n-* cos (2n+ 1)*7 + O(n-Q) (72 < 2n+ I), 
and this gives 

nL 

n = l  
$ - C Yn-lY,dn = -lonL n-*sin (2(2n)*y)dn 
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At the equator, @ = - 2nLq and U N - @? = 2nL. The width of the equatorial 
‘jet’ is given roughly by (2nL)4qc = in-, or 

Beyond rlC, equation (51) shows a typical sin2x/x diffraction pattern owing to 
the assumed abrupt cut-off at  nL. For a smooth fading function the behaviour 
of $(T)  beyond yc would be more like half the envelope, $(q) N -7-l and 
u =  -&= -7- 2. The ratio of the return flow to the equatorial jet is of the order 

The present treatment suggests a return flow in subtropical latitudes. 
Finally, the z-dependence - N ( z )  is the same as previously discussed. 

7. Discussion 
We have interpreted the submerged, equatorial profile of the Cromwell current 

in terms of the baroclinic, equatorial steering of internal planetary waves. The 
second-order theory gives arectified component U N q2/c and to fit observed data 
the three velocities here involved, U ,  q, c, might all be of the order of 1 knot. In  
the few cases where adequate time series of ocean currents were observed, it was 
found that the fluctuations were of the same order as the mean current. Perhaps 
the Cromwell current is no exception; clearly what is needed is measurements of 
planetary waves a t  the equator. At the moment we have made the dubious 
contribution of explaining a well-observed effect by an unobserved cause. 

Our interpretation q N c conflicts with the assumption implicit in the pertur- 
bation treatment, and we conveniently ignore all problems involving sum fre- 
quencies, multiple interactions, forcing functions, etc. 

Finally, it should be clearly stated that our results are anticipated by any of 
the previous investigations that emphasize the role of Reynolds stresses (Robin- 
son 1965). Perhaps our contribution is to state the problem in more specific 
terms. At first hand it seems unreasonable to ascribe to a long-period and rela- 
tively weak (if it exists at  all) wave motion an intense rectification and associated 
non-linear effects usually reserved for ‘finite amplitude’ waves. But, in fact, the 
essential parameter is amplitude/length, and this can be large also if the 
wavelength is small. For Rossby waves the ‘inverse dispersion’ (&/as negative) 
leads to small wavelengths a t  large T, and so Rossby waves are well rectified 
under the unaccustomed conditions of small amplitude and large period. 

We are reminded of Pedlosky’s (1965) remarkable conclusion that the rectified 
transient currents associated with the ocean’s response to variable winds are a 
significant component of the Gulf Stream system. If this is the case in a region 
where the mean wind-driven circulation is greatly intensified and the Rossby 
waves not particularly channelled, would rectification not be predominant at the 
equator where the wind effects are not particularly emphasized, and Rossby 
waves are uniquely concentrated? 

17 Fluid Mech. 33 
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Appendix 
We use the following steps to simplify equation (40): 

1. (upt7 - vpt& = - (utp7 - vtp6) by (34). Substituting for ps  and p,, from (14) 
we find 

by § 5 (ii). 
- <UPt7- V P t d  = (ut(vt - Y U )  - Vt@t - 7 4 )  = 4(Y(U2 + V"t) = 0 (A 1) 

2. Multiply (36) by p and time-average to obtain ( q p )  + ( vp )  = 0, or 

(WPt) = (VP). (A2) 

w =  -vt+qp. (A 3) 

3. Integrate (36) with respect to time to obtain 

4. Substitute for w from (A3) to obtain 

( U W ) [  + (vw), = ( - UWt + 7up)t + ( - vvt + Tvp)7 

= - (UV"[ + Y(UP)[ - (VV", + <VP) + Y<VP)q 

= - ( 4 5  + (UP) + Y((UP)[ + (VP),) - (VVt>, 
= - (UV"[ + (VP), (A 4) 

since (up)[+ (vp) ,  = 0 by (35), and ( v d )  = 0 by 0 5 (ii). 

5. Substituting from (Al),  (A2) and (A4) into (40) gives (41). 
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